Domain wall fermion

Lattice fermion discretisation

In lattice field theory, domain wall (DW) fermions are a fermion discretization avoiding the fermion doubling problem.[1] They are a realisation of Ginsparg–Wilson fermions in the infinite separation limit L s {\displaystyle L_{s}\rightarrow \infty } where they become equivalent to overlap fermions.[2] DW fermions have undergone numerous improvements since Kaplan's original formulation[1] such as the reinterpretation by Shamir and the generalisation to Möbius DW fermions by Brower, Neff and Orginos.[3][4]

The original d {\displaystyle d} -dimensional Euclidean spacetime is lifted into d + 1 {\displaystyle d+1} dimensions. The additional dimension of length L s {\displaystyle L_{s}} has open boundary conditions and the so-called domain walls form its boundaries. The physics is now found to ″live″ on the domain walls and the doublers are located on opposite walls, that is at L s {\displaystyle L_{s}\rightarrow \infty } they completely decouple from the system.

Kaplan's (and equivalently Shamir's) DW Dirac operator is defined by two addends

D DW ( x , s ; y , r ) = D ( x ; y ) δ s r + δ x y D d + 1 ( s ; r ) {\displaystyle D_{\text{DW}}(x,s;y,r)=D(x;y)\delta _{sr}+\delta _{xy}D_{d+1}(s;r)\,}

with

D d + 1 ( s ; r ) = δ s r ( 1 δ s , L s 1 ) P δ s + 1 , r ( 1 δ s 0 ) P + δ s 1 , r + m ( P δ s , L s 1 δ 0 r + P + δ s 0 δ L s 1 , r ) {\displaystyle D_{d+1}(s;r)=\delta _{sr}-(1-\delta _{s,L_{s}-1})P_{-}\delta _{s+1,r}-(1-\delta _{s0})P_{+}\delta _{s-1,r}+m\left(P_{-}\delta _{s,L_{s}-1}\delta _{0r}+P_{+}\delta _{s0}\delta _{L_{s}-1,r}\right)\,}

where P ± = ( 1 ± γ 5 ) / 2 {\displaystyle P_{\pm }=(\mathbf {1} \pm \gamma _{5})/2} is the chiral projection operator and D {\displaystyle D} is the canonical Dirac operator in d {\displaystyle d} dimensions. x {\displaystyle x} and y {\displaystyle y} are (multi-)indices in the physical space whereas s {\displaystyle s} and r {\displaystyle r} denote the position in the additional dimension.[5]

DW fermions do not contradict the Nielsen–Ninomiya theorem because they explicitly violate chiral symmetry (asymptotically obeying the Ginsparg–Wilson equation).

References

  1. ^ a b Kaplan, David B. (1992). "A method for simulating chiral fermions on the lattice". Physics Letters B. 288 (3–4): 342–347. arXiv:hep-lat/9206013. Bibcode:1992PhLB..288..342K. doi:10.1016/0370-2693(92)91112-m. ISSN 0370-2693. S2CID 14161004.
  2. ^ Neuberger, Herbert (1998). "Vectorlike gauge theories with almost massless fermions on the lattice". Phys. Rev. D. 57 (9). American Physical Society: 5417–5433. arXiv:hep-lat/9710089. Bibcode:1998PhRvD..57.5417N. doi:10.1103/PhysRevD.57.5417. S2CID 17476701.
  3. ^ Yigal Shamir (1993). "Chiral fermions from lattice boundaries". Nuclear Physics B. 406 (1): 90–106. arXiv:hep-lat/9303005. Bibcode:1993NuPhB.406...90S. doi:10.1016/0550-3213(93)90162-I. ISSN 0550-3213. S2CID 16187316.
  4. ^ R.C. Brower and H. Neff and K. Orginos (2006). "Möbius Fermions". Nuclear Physics B - Proceedings Supplements. 153 (1): 191–198. arXiv:hep-lat/0511031. Bibcode:2006NuPhS.153..191B. doi:10.1016/j.nuclphysbps.2006.01.047. ISSN 0920-5632. S2CID 118926750.
  5. ^ Gattringer, C.; Lang, C.B. (2009). "10 More about lattice fermions". Quantum Chromodynamics on the Lattice: An Introductory Presentation. Lecture Notes in Physics 788. Springer. pp. 249–253. doi:10.1007/978-3-642-01850-3. ISBN 978-3642018497.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Domain_wall_fermion&oldid=1168554087"