This article needs additional citations for verification. (May 2022) |
.jpg/440px-FFF_separation_principle_in_asymmetric_flow_field-flow_fractionation_(AF4).jpg)
フィールドフローフラクショネーション(FFF)[1]は、J.カルビン・ギディングスが発明した分離技術である。この技術は、固定相を持たない分離プラットフォームを流れる液体溶液中のコロイド状または高分子量物質の分離に基づいている。流れる溶離液によって運ばれる溶質の希薄溶液または懸濁液に作用するため、液体クロマトグラフィーに似ている。分離は、長く狭い層流チャネルを通じて送り込まれるサンプルの輸送方向に対して垂直なフィールド(油圧、遠心、[2]熱、[3]電気、[4]磁気、[5]重力など)またはクロスフローを適用することによって達成される。フィールドはサンプル成分に力を及ぼし、蓄積壁と呼ばれるチャネル壁の1つに向かって成分を集中させる。[6]力は試料の特性と相互作用し、それによって分離が起こります。言い換えれば、成分は交差場によって及ぼされる力の下で異なる「移動度」を示します。例えば、水力学的FFF法、すなわちクロスフローFFF法の場合、分離を駆動する特性は並進拡散係数または流体力学的サイズです。熱場(一方の壁を加熱し、もう一方の壁を冷却する)の場合、分離を駆動する特性は熱拡散係数と並進拡散係数の比です。
アプリケーションと検出方法
FFFは、「通常」モードではサブミクロン領域(1nmから数ミクロン)まで、いわゆる立体モード[7] [8]では最大50ミクロンまで適用可能です。通常モードから立体モードへの移行は、1ミクロンを超えるサイズで拡散が無視できるようになったときに起こります。FFFは、可溶性高分子[9]と粒子またはコロイドの 両方を1回の分析で分離できる、広いダイナミックレンジを持つ点で独特です。
代表的な用途としては、高モル質量ポリマーおよびポリマー複合材料、工業用および環境用のナノ粒子、ウイルスおよびウイルス様粒子、脂質ナノ粒子、細胞外小胞、その他の種類の生物学的サンプルなどがあります。
FFFは、HPLCやSECで知られているあらゆる種類の検出器と組み合わせることができます。FFFは、液体移動相がチャネルを通過する点で液体クロマトグラフィーと類似しているため、LCでも使用されている検出器が最も一般的に使用されています。最も頻繁に使用されるのは、非破壊的な性質を持つUV-VIS検出器です。多角度光散乱と組み合わせることで、溶出画分のサイズを計算し、FFF理論で得られた値と比較することができます。もう一つの一般的な特異的検出法は、高い特異性と感度で金属ナノ粒子を特性評価するための 誘導結合プラズマ質量分析です。
利点
FFF は、サイズ排除クロマトグラフィーなどの他の分離方法では特性評価できない可能性のある複雑で不均質なサンプルの物理的な分離を提供します。固定相がないため、表面またはカラム充填材との相互作用が少なくなります。分離は、分離場の強度を調節することで調整可能です。FFF は穏やかな方法であり、壊れやすいサンプルに物理的なストレスを与えず、キャリア溶液は最高のサンプル安定性を考慮して調整できます。FFF には十分に練られた理論があり、一連の試行錯誤実験をすることなく、最適な結果に到達するための分離条件を見つけるために使用できます。ほとんどすべてのユーザーは、溶出サンプル画分のサイズを測定するために主に光散乱検出器に依存していますが、FFF 理論からサンプル画分の物理的パラメータの情報を引き出すこともできます。
制限事項
FFFは拡散速度が速いため、小さな分子には適していません。効果的な分離のためには、サンプルを蓄積壁の非常に近く(10μm未満の距離)に濃縮する必要があり、そのためには力場によって生じるドリフト速度が拡散係数よりも2桁以上高くなければなりません。FFFチャネルで発生できる最大の電界強度が、分離可能な分子サイズの下限値を決定します。現在の装置では、これは約1nmです。
FFFは非常に汎用性の高い技術ですが、あらゆる用途に「万能」な方法は存在しません。FFF法の種類によって、専用の機器が必要になります。現在、広く普及しているのは、いわゆる非対称流フィールドフローフラクショネーション(AF4)[10]のみです。遠心分離、熱分離、電気分離などの他の方法は、依然としてニッチな存在にとどまっています。
FFFはカラムクロマトグラフィーとは異なる挙動を示すため、HPLCやSECのユーザーにとっては直感に反する場合があります。FFFの動作原理を理解することは、この手法を効果的に適用するために不可欠です。
発見と一般原則
FFFは、 J.カルビン・ギディングスによって1966年[11] と1976年[1]に考案され、初めて発表されました。ギディングスは、今日最も重要なFFF技術であるフローFFF [12]に関する多くの論文を発表しました。FFFの発明者として認められているギディングスは、ユタ大学の化学教授であり、クロマトグラフィーおよび分離技術の専門家でした。
上で述べたように、フィールドフロー分別では、フィールドは水力(蓄積壁として半透膜を通過する直交流)、重力、遠心、熱、電気、または磁気のいずれかになります。 いずれの場合も、分離メカニズムは、拡散の力との定常平衡にある、フィールドの力による粒子の移動度の差によって生成されます。フィールドは蓄積壁に向かって下向きのドリフト速度と濃度を誘発し、拡散はこの濃度勾配に逆らって作用します。 一定の時間(緩和時間と呼ばれる)が経過すると、2 つの力は定常平衡に達します。 これは、すべてのコンポーネントが一定に動いている粒子クラウドとして視覚化するのが最適ですが、平均濃度は蓄積壁からチャネルに向かって指数関数的に減少します。 海面から上昇する気圧の減少には、気圧の式で表されているのと同じ指数関数的な減少があります。 緩和が達成された後、チャネルの流れがアクティブになり、溶出が始まります。細い流路(通常、高さ250~350μm)では、放物線状の層流速度プロファイルが形成されます。このプロファイルは、集積壁からの距離が増加するにつれて流速が急激に増加するという特徴があります。このプロファイルは、流路壁からの平衡位置に基づいて、特定の粒子の速度を決定します。集積壁に近い粒子は、集積壁より上の粒子に比べて移動速度が遅くなります。粒子の速度と流体の平均速度の比は、保持率Rと呼ばれます。FFFにおいて効率的な分離を行うには、Rは0.2未満である必要があり、典型的な値は0.02~0.1の範囲です。
理論と方法
フィールドフローフラクショネーションにおける分離は、層流チャネルで行われます。このチャネルは、スペーサーによって分離された上部ブロックと下部ブロックで構成されています。スペーサーには、ブロック間の隙間を埋める切り欠き(長方形または台形)があり、この切り欠きがチャネル容積を形成します。あるいは、チャネルを上部ブロックに空洞として削り込むこともできます。このチャネルは、力場を適用できるように設計されているため、各FFF法には専用のチャネルが必要です。サンプルは、希釈溶液または懸濁液としてチャネルに注入され、キャリア溶液がチャネルを通してポンプで送られる際に、入口から出口への移動中に分離されます。チャネル出口の下流には、溶出画分を分析するための1つまたは複数の検出器が設置されます。
ギディングス氏とその同僚は、すべての FFF 方法に共通する一般的な保持方程式を説明する理論を開発しました。
力(F)と保持時間(t)の関係r)
分離力場と滞留時間の関係は、第一原理から導き出すことができます。FFFチャネル内の2つの粒子集団を考えてみましょう。交差場は両方の粒子雲を底部の「蓄積」壁に向かって駆動します。この力場に対抗するのは、粒子の自然拡散、すなわちブラウン運動であり、これは反対方向に作用する運動を生み出します。これら2つの輸送過程が平衡に達すると、粒子濃度cは式( 1 )に示すように、蓄積壁からの高度xの指数関数に近づきます。
| 1 |
は粒子雲の特徴的な高度を表します。これは、粒子雲がチャネル内に到達する平均高度に関連し、粒子集団の値がそれぞれ異なる場合にのみ分離が起こります。 各成分の は、個々の粒子に作用する力、または拡散係数Dとドリフト速度Uの比に関連します。[13]
| 2 |
kはボルツマン定数、Tは絶対温度、Fは力場によって単一粒子に及ぼされる力です。これは、特性高度値が印加された力に反比例することを示しています。したがって、Fが分離プロセスを支配します。したがって、力場の強度を変化させることで、分離を最適なレベルに制御することができます。
分子雲の速度 V は、単に放物線状のフロー プロファイルに埋め込まれた 指数分布の平均速度です。
保持時間 t r は次のように表すことができます。
| 3 |
ここで、L はチャネルの長さです。
FFFでは、保持時間は通常、保持率で表されます。保持率は、ボイドタイム t 0 (保持されないトレーサーの出現)を保持時間 t rで割った値です。保持率の式は以下のようになります。
| 4 |
ここで、をチャネルの厚さまたは高さwで割った値です。をkT/Fに代入すると、印加された横方向力に対する保持率が示されます。
| 5 |
効率的な動作のためには、チャネル厚さの値 w は をはるかに超えます。この場合、括弧内の項は1に近似します。したがって、式5は次のように近似できます。
| 6 |
したがって、t rはFにほぼ比例する。粒子バンドXとYの分離は、保持時間の有限な増分∆t rで表されるが、これは両者間の力の増分∆Fが十分である場合にのみ達成される。このためには、 わずか10 −16 Nの力の差で十分である。
Fと∆Fの大きさは、粒子の特性、電場強度、および電場の種類に依存します。これにより、この技術は様々なバリエーションや応用が可能です。この基本原理から、適用される分離力の性質と対象となる分子サイズの範囲に応じて、様々な形態のFFFが発展してきました。
フラクトグラム

FFFでは、検出器の信号を時間の関数として表示したものをフラクトグラムと呼びます。これは、カラムクロマトグラフィーのクロマトグラムとは対照的です。フラクトグラムは、FFF理論や検出器の信号を用いて、分析対象物質の1つまたは複数の物理的特性(サイズ、モル質量、電荷など)の分布図に変換できます。
これらの物質は、多くの場合、少量の液体緩衝液中に懸濁された粒子であり、緩衝液によってFFFチャネルに沿って押し出されます。特定の粒子種の速度変化は、粒子のサイズ、質量、および/または不均一な流速を持つチャネルの壁からの距離に起因する可能性があります。したがって、サンプル中の異なる粒子種の存在は、長いチャネルのある程度の距離で共通の特性が検出されること、そして得られたフラクトグラムが、それぞれの粒子の到着時間の違いと物理的・化学的特性により、ピークによって異なる粒子種の存在を示すことによって識別できます。
フォーム
現在利用可能な技術のほとんどは、ギディングス教授が約 40 年前に開発した技術を改良したものです。
対称的な流れ
これらの技術の中で、フローFFFは最初に商業的に提供されたものです。フローFFFは、密度とは無関係に粒子をサイズに基づいて分離し、1nmから1μmの範囲の高分子を測定できます。この点で、これは最も汎用性の高いFFFサブ技術です。フローFFFのクロスフローは、チャネル上部の多孔質フリットから流入し、堆積壁(つまり底壁)にある半透膜出口フリットから流出します。過去20年間で、対称フローは非対称フローに置き換えられました。
中空糸フロー
中空糸フローFFF(HF5)は、Leeら(1974)によって開発されました。[14] HF5は、タンパク質やその他の高分子の分析に応用されています。HF5は1974年に開発された最初のフローFFFでした。HF5の利点は、日常的なアプリケーションで容易に交換できる使い捨てのチャネルユニットを備えていることです。HF5の欠点の一つは、膜材料の選択肢が限られていることです。ポリエーテルスルホン(PES)膜のみが利用可能です。現在、HF5は柔軟性に欠け、サンプル負荷量に制限があるため、広く使用されていません。
非対称フロー
高温非対称フロー フィールドフローフラクショネーションは、150 ℃ を超える温度で溶解する高モル質量および超高モル質量のポリマーの分離に使用できます。
サーマル
熱FFFは、その名の通り、チャネルに温度勾配を加えることで分離力を発生させます。チャネルの上壁を加熱し、下壁を冷却することで、ポリマーと粒子を熱拡散によって冷たい壁へと押し進めます。熱FFFは、有機溶媒中の合成ポリマーを分離する技術として開発されました。熱FFFは、分子量と化学組成の両方で高分子を分離できるという点で、FFF技術の中でも独自の特徴を持ち、同じ分子量のポリマー分画を分離することができます。今日、この技術はポリマー、ゲル、ナノ粒子の特性評価に最適です。
熱FFFの主な利点の一つは、分離チャネルの寸法がシンプルで明確に定義されていることです。これにより、実験室間または装置間でのユニバーサルキャリブレーションが可能になります。これは、熱FFFのキャリブレーション定数が、通常の(分子)拡散係数Dと熱拡散係数(または熱泳動移動度)D Tの比を厳密に表すためです。これらの係数はポリマーにのみ依存します。したがって、ThFFFユニバーサルキャリブレーションは装置間および実験室間で相互運用可能ですが、よく知られているサイズ排除クロマトグラフィーユニバーサルキャリブレーションは、同じ装置内でのみポリマー間で相互運用可能です。[15]
スプリットフロー薄層細胞分画
スプリットフロー薄セル分画(SPLITT)[16]は、重力[17]、電気[18]、または拡散差を利用して連続的にμmを超えるサイズの粒子を分離する特別な分取FFF技術です。SPLITTシステムには、2つの入口と2つの出口があります。これは、液体に浸したサンプルをチャネルの開始時に1つの入口に低流量で送り込み、同時にキャリア液をはるかに高い流量で2番目の入口に送り込むことによって実行されます。2つの入口ストリームと2つの出口ストリームの流量比を制御することで分離を制御し、サンプル成分を2つの異なるサイズの画分に分離することができます。分離力として重力のみを使用するため、SPLITTは1μmを超える粒子に限定され、最も感度の低いFFF技術となります。
遠心分離
遠心式FFFでは、分離場は遠心力によって生成されます。流路はリング状で、運転中にプログラム可能な回転速度で回転します。流体とサンプルは流路にポンプで送り込まれ、遠心分離されます。これにより、オペレーターは粒子を質量(サイズと密度)で分離することができます。遠心式FFFの利点は、粒子サイズが粒子質量の3乗に比例するため、加える力を変化させることで高いサイズ分解能を実現できることにあります。
遠心分離FFFの独自の利点は、十分な浮遊密度を前提とした高分解能技術にあります。これにより、わずか5%のサイズ差を持つ粒子の分離が可能になります。
遠心分離FFFの利点は、粒子や高分子を粒子サイズだけでなく、粒子密度によって分離できることです。この例では、同じサイズの金ナノ粒子と銀ナノ粒子を、金ナノ粒子と銀ナノ粒子の密度の違いに応じて2つのピークに分離することができます。
AF4分離では、質量と時間の比は1:1です。遠心分離FFFに密度という3番目のパラメータを加えることで、質量と時間の3乗に近い比が得られます。これにより、ピーク間の区別が大幅に拡大され、分解能が大幅に向上します。これは、複合材料やナノ粒子を含むコーティングポリマーなど、サイズは変わらないものの密度が異なる粒子を含む新規製品に特に有効です。この方法により、密度が異なる場合、同じサイズの2つの粒子を2つのピークに分離することができます。
この方法の限界は、サンプルの密度に依存するサイズの下限にあります。特に生物サンプルの場合、その限界は直径20~50nm程度です。
電気
電気FFFでは、横方向電流(DC)を印加することで電界を発生させます。試料成分の電荷に応じて電気泳動ドリフト速度が誘起され、ブラウン運動による拡散によって相殺されるため、分離は電気泳動移動度とサイズの比に依存します。電気FFFの用途は限られており、現在ではほとんど使用されていません。他の改良法として、特殊な交流電流を印加する周期的電気FFFが開発されています。これにより、電気泳動移動度に応じた分離が可能になります。もう一つのバリエーションとして、交差流場に加えて電界を印加する電気非対称流FFF(EAF4)があります。EAF4は、分解能が低く、電気分解生成物や気泡が流路流出物を汚染し、検出器の信号品質を損なうという、純粋な電気FFFの限界を克服しています。[19]
参考文献
- ^ ab Giddings, J. Calvin; Yang, Frank JF; Myers, Marcus N. (1976年9月24日). 「フローフィールドフローフラクショネーション:多用途な新分離法」 . Science . 193 (4259): 1244– 1245. doi :10.1126/science.959835. ISSN 0036-8075. PMID 959835.
- ^ Yang, Feng-Shyang; Caldwell, Karin D; Myers, Marcus N; Giddings, J.Calvin (1983年5月). 「沈降フィールドフロー分画法によるコロイド特性評価.III. エマルジョン」 . Journal of Colloid and Interface Science . 93 (1): 115– 125. Bibcode :1983JCIS...93..115Y. doi :10.1016/0021-9797(83)90391-0.
- ^ Giddings, J. Calvin.; Yoon, Young Hee.; Myers, Marcus N. (1975年1月1日). 「ポリマー分離におけるゲル浸透クロマトグラフィーと熱フィールドフローフラクショネーションの評価と比較」 .分析化学. 47 (1): 126– 131. doi :10.1021/ac60351a035. ISSN 0003-2700.
- ^ Tasci, Tonguc O.; Johnson, William P.; Fernandez, Diego P.; Manangon, Eliana; Gale, Bruce K. (2015年12月). 「電界フローフラクショネーションシステムの粒子ベースモデリング」.クロマトグラフィー. 2 (4): 594– 610. doi : 10.3390/chromatography2040594 . ISSN 2227-9075.
- ^ Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej (2009年10月5日). 「磁性ナノ粒子薬物キャリアと四重極磁場フローフラクショネーションによるその研究」. Molecular Pharmaceutics . 6 (5): 1290– 1306. doi :10.1021/mp900018v. ISSN 1543-8384. PMC 2757515. PMID 19591456 .
- ^ Williams, P. Stephen; Moon, Myeong Hee; Giddings, J. Calvin (1996年8月10日). 「堆積壁とキャリア溶液組成が沈降/立体場流動分画における揚力に及ぼす影響」 . Colloids and Surfaces A: Physicochemical and Engineering Aspects . 113 (3): 215– 228. doi :10.1016/0927-7757(96)03669-2. ISSN 0927-7757.
- ^ Giddings, J. Calvin.; Chen, Xiurong.; Wahlund, Karl Gustav.; Myers, Marcus N. (1987年8月1日). 「フロー/ステリックフィールドフローフラクショネーションによる高速粒子分離」 .分析化学. 59 (15): 1957– 1962. doi :10.1021/ac00142a014. ISSN 0003-2700.
- ^ Giddings, J. Calvin.; Moon, Myeong Hee.; Williams, P. Stephen.; Myers, Marcus N. (1991年7月15日). 「沈降/立体場フロー分画法による粒子径分布:密度補正に基づく較正法の開発」 .分析化学. 63 (14): 1366– 1372. doi :10.1021/ac00014a006. ISSN 0003-2700. PMID 1928720.
- ^ ジョルダーニ、ステファノ;マラッシ、ヴァレンティナ。プラッチ、アンナ。ザットーニ、アンドレア。ロダ、バーバラ。レシグリアン、ピエルイジ(2023)。 「分子生物学およびバイオテクノロジーにおけるフィールドフロー分別」。分子。28 (17): 6201.土井: 10.3390/molecules28176201。ISSN 1420-3049。PMC 10488451。PMID 37687030。
- ^ Yohannes, G.; Jussila, M.; Hartonen, K.; Riekkola, M.-L. (2011年7月8日). 「バイオポリマーおよびバイオ粒子の分離と特性評価のための非対称フローフィールドフローフラクショネーション技術」 . Journal of Chromatography A.フローフィールドフローフラクショネーション. 1218 (27): 4104– 4116. doi :10.1016/j.chroma.2010.12.110. ISSN 0021-9673. PMID 21292269.
- ^ Giddings, J. Calvin (1966). 「濃度と流れの不均一性の結合に基づく新しい分離概念」 . Separation Science . 1 : 123–125 . doi :10.1080/01496396608049439.
- ^ Giddings, J. Calvin.; Yang, Frank J.; Myers, Marcus N. (1976年7月1日). 「フローフィールドフローフラクショネーションの理論的および実験的特性評価」 .分析化学. 48 (8): 1126– 1132. doi :10.1021/ac50002a016. ISSN 0003-2700.
- ^ Giddings, JC, Yang FJ, Myers MN (1976). 「フローフィールドフローフラクショネーション:多用途の新しい分離法」 Science 193.4259: 1244–1245.
- ^ Lee HL, Reis JFG, Lightfoot EN (1974). 単相クロマトグラフィー:限外濾過と電気泳動による溶質の遅延. AIChE Journal, vol. 20, p. 776.
- ^ WJ Cao、P.S. Williams、M.N. Myers、J.C. Giddings、「熱場フローフラクショネーションユニバーサルキャリブレーション:冷壁温度の変動を考慮した拡張」、分析化学、1999年、71、pp1597-1609
- ^ ウィリアムズ、フィリップ・スティーブン(2022年1月1日)、コンタド、カティア(編)、「第18章 フィールドフローフラクショネーションとSPLITTフラクショネーションの理論的原理」、粒子分離技術、分離科学ハンドブック、エルゼビア、pp. 579– 620、doi :10.1016/b978-0-323-85486-3.00001-9、ISBN 978-0-323-85486-3、 2023年10月14日閲覧
- ^ Barman, Bhajendra N.; Williams, P. Stephen; Myers, Marcus N.; Giddings, J. Calvin (2018年2月14日). 「遠心力場と重力場を用いた沈下浮上モード下でのスプリットフロー薄層(SPLITT)細胞分離」 . Industrial & Engineering Chemistry Research . 57 (6): 2267– 2276. doi :10.1021/acs.iecr.7b04223. ISSN 0888-5885.
- ^ Capuano, Andrea; Adami, Andrea; Mulloni, Viviana; Lorenzelli, Leandro (2017). 「オンラインタンパク質分離のための小型SPLITTシステム」. Proceedings . 1 (4): 527. doi : 10.3390/proceedings1040527 . ISSN 2504-3900.
- ^ Johann, Christoph; Elsenberg, Stephan; Schuch, Horst; Rösch, Ulrich (2015年4月21日). 「電気泳動とフローフィールドフローフラクショネーションを組み合わせたナノ粒子およびタンパク質の電気泳動移動度測定装置および方法」 .分析化学. 87 (8): 4292– 4298. doi :10.1021/ac504712n. ISSN 0003-2700. PMID 25789885.