Gompertz constant

Special constant related to the exponential integral

In mathematics, the Gompertz constant or Euler–Gompertz constant,[1][2] denoted by δ {\displaystyle \delta } , appears in integral evaluations and as a value of special functions. It is named after Benjamin Gompertz.

It can be defined via the exponential integral as:[3]

δ = e Ei ( 1 ) = 0 e x 1 + x d x . {\displaystyle \delta =-e\operatorname {Ei} (-1)=\int _{0}^{\infty }{\frac {e^{-x}}{1+x}}dx.}

The numerical value of δ {\displaystyle \delta } is about

δ = 0.596347362323194074341078499369...   (sequence A073003 in the OEIS).

History

When Euler studied divergent infinite series, he encountered δ {\displaystyle \delta } via, for example, the above integral representation. Le Lionnais called δ {\displaystyle \delta } the Gompertz constant because of its role in survival analysis.[1]

In 1962, A. B. Shidlovski proved that at least one of the Euler–Mascheroni constant and the Euler–Gompertz constant is irrational.[4] This result was improved in 2012 by Tanguy Rivoal where he proved that at least one of them is transcendental.[2][5][6][7]

Identities involving the Gompertz constant

The most frequent appearance of δ {\displaystyle \delta } is in the following integrals:

δ = 0 ln ( 1 + x ) e x d x {\displaystyle \delta =\int _{0}^{\infty }\ln(1+x)e^{-x}dx}
δ = 0 1 1 1 ln ( x ) d x {\displaystyle \delta =\int _{0}^{1}{\frac {1}{1-\ln(x)}}dx}

which follow from the definition of δ by integration of parts and a variable substitution respectively.

Applying the Taylor expansion of Ei {\displaystyle \operatorname {Ei} } we have the series representation

δ = e ( γ + n = 1 ( 1 ) n n n ! ) . {\displaystyle \delta =-e\left(\gamma +\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n\cdot n!}}\right).}

Gompertz's constant is connected to the Gregory coefficients via the 2013 formula of I. Mező:[8]

δ = n = 0 ln ( n + 1 ) n ! n = 0 C n + 1 { e n ! } 1 2 . {\displaystyle \delta =\sum _{n=0}^{\infty }{\frac {\ln(n+1)}{n!}}-\sum _{n=0}^{\infty }C_{n+1}\{e\cdot n!\}-{\frac {1}{2}}.}

The Gompertz constant also happens to be the regularized value of the summation of alternating factorials of all natural numbers (1 − 1 + 2 − 6 + 24 − 120 + ⋯), which is defined by Borel summation:[2]

δ = k = 0 ( 1 ) k k ! {\displaystyle \delta =\sum _{k=0}^{\infty }(-1)^{k}k!}

It is also related to several polynomial continued fractions:[1][2]

1 δ = 2 1 2 4 2 2 6 3 2 8 4 2 n 2 2 ( n + 1 ) {\displaystyle {\frac {1}{\delta }}=2-{\cfrac {1^{2}}{4-{\cfrac {2^{2}}{6-{\cfrac {3^{2}}{8-{\cfrac {4^{2}}{\ddots {\cfrac {n^{2}}{2(n+1)-\dots }}}}}}}}}}}
1 δ = 1 + 1 1 + 1 1 + 2 1 + 2 1 + 3 1 + 3 1 + 4 {\displaystyle {\frac {1}{\delta }}=1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {2}{1+{\cfrac {2}{1+{\cfrac {3}{1+{\cfrac {3}{1+{\cfrac {4}{\dots }}}}}}}}}}}}}}}
1 1 δ = 3 2 5 6 7 12 9 20 n ( n + 1 ) 2 n + 3 {\displaystyle {\frac {1}{1-\delta }}=3-{\cfrac {2}{5-{\cfrac {6}{7-{\cfrac {12}{9-{\cfrac {20}{\ddots {\cfrac {n(n+1)}{2n+3-\dots }}}}}}}}}}}

Notes

  1. ^ a b c Finch, Steven R. (2003). Mathematical Constants. Cambridge University Press. pp. 425–426.
  2. ^ a b c d Lagarias, Jeffrey C. (2013-07-19). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society. 50 (4): 527–628. arXiv:1303.1856. doi:10.1090/S0273-0979-2013-01423-X. ISSN 0273-0979. S2CID 119612431.
  3. ^ Weisstein, Eric W. "Gompertz Constant". mathworld.wolfram.com. Retrieved 2024-10-20.
  4. ^ Aptekarev, A. I. (28 February 2009). "On linear forms containing the Euler constant". arXiv:0902.1768 [math.NT].
  5. ^ Aptekarev, A. I. (2009-02-28). "On linear forms containing the Euler constant". arXiv:0902.1768 [math.NT].
  6. ^ Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal. 61 (2): 239–254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
  7. ^ Waldschmidt, Michel (2023). "On Euler's Constant" (PDF). Sorbonne Université, Institut de Mathématiques de Jussieu, Paris.
  8. ^ Mező, István (2013). "Gompertz constant, Gregory coefficients and a series of the logarithm function" (PDF). Journal of Analysis and Number Theory (7): 1–4.
  • Wolfram MathWorld
  • OEIS entry
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gompertz_constant&oldid=1329503392"