Hurwitz determinant

In mathematics, Hurwitz determinants were introduced by Adolf Hurwitz (1895), who used them to give a criterion for all roots of a polynomial to have negative real part.

Definition

Consider a characteristic polynomial P in the variable λ of the form:

P ( λ ) = a 0 λ n + a 1 λ n 1 + + a n 1 λ + a n {\displaystyle P(\lambda )=a_{0}\lambda ^{n}+a_{1}\lambda ^{n-1}+\cdots +a_{n-1}\lambda +a_{n}}

where a i {\displaystyle a_{i}} , i = 0 , 1 , , n {\displaystyle i=0,1,\ldots ,n} , are real.

The square Hurwitz matrix associated to P is given below:

H = ( a 1 a 3 a 5 0 0 0 a 0 a 2 a 4 0 a 1 a 3 a 0 a 2 0 0 a 1 a n a 0 a n 1 0 0 a n 2 a n a n 3 a n 1 0 0 0 0 a n 4 a n 2 a n ) . {\displaystyle H={\begin{pmatrix}a_{1}&a_{3}&a_{5}&\dots &\dots &\dots &0&0&0\\a_{0}&a_{2}&a_{4}&&&&\vdots &\vdots &\vdots \\0&a_{1}&a_{3}&&&&\vdots &\vdots &\vdots \\\vdots &a_{0}&a_{2}&\ddots &&&0&\vdots &\vdots \\\vdots &0&a_{1}&&\ddots &&a_{n}&\vdots &\vdots \\\vdots &\vdots &a_{0}&&&\ddots &a_{n-1}&0&\vdots \\\vdots &\vdots &0&&&&a_{n-2}&a_{n}&\vdots \\\vdots &\vdots &\vdots &&&&a_{n-3}&a_{n-1}&0\\0&0&0&\dots &\dots &\dots &a_{n-4}&a_{n-2}&a_{n}\end{pmatrix}}.}

The i-th Hurwitz determinant is the i-th leading principal minor (minor is a determinant) of the above Hurwitz matrix H. There are n Hurwitz determinants for a characteristic polynomial of degree n.

See also

References

  • Hurwitz, A. (1895), "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt", Mathematische Annalen, 46 (2): 273–284, doi:10.1007/BF01446812, S2CID 121036103
  • Wall, H. S. (1945), "Polynomials whose zeros have negative real parts", The American Mathematical Monthly, 52 (6): 308–322, doi:10.1080/00029890.1945.11991574, ISSN 0002-9890, JSTOR 2305291, MR 0012709
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hurwitz_determinant&oldid=1255593734"