Flag bundle

In algebraic geometry, the flag bundle of a flag[1]

E : E = E l E 1 0 {\displaystyle E_{\bullet }:E=E_{l}\supsetneq \cdots \supsetneq E_{1}\supsetneq 0}

of vector bundles on an algebraic scheme X is the algebraic scheme over X:

p : Fl ( E ) X {\displaystyle p:\operatorname {Fl} (E_{\bullet })\to X}

such that p 1 ( x ) {\displaystyle p^{-1}(x)} is a flag V {\displaystyle V_{\bullet }} of vector spaces such that V i {\displaystyle V_{i}} is a vector subspace of ( E i ) x {\displaystyle (E_{i})_{x}} of dimension i.

If X is a point, then a flag bundle is a flag variety and if the length of the flag is one, then it is the Grassmann bundle; hence, a flag bundle is a common generalization of these two notions.

Construction

A flag bundle can be constructed inductively.

References

  1. ^ Here, E i {\displaystyle E_{i}} is a subbundle not subsheaf of E i + 1 . {\displaystyle E_{i+1}.}
  • William Fulton. (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
  • Expo. VI, § 4. of Berthelot, Pierre; Alexandre Grothendieck; Luc Illusie, eds. (1971). Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225) (in French). Vol. 225. Berlin; New York: Springer-Verlag. xii+700. doi:10.1007/BFb0066283. ISBN 978-3-540-05647-8. MR 0354655.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Flag_bundle&oldid=1279520308"