Spinh group

Twisted spin group

In spin geometry, a spinh group (or quaternionic spin group) is a Lie group obtained by the spin group through twisting with the first symplectic group. H stands for the quaternions, which are denoted H {\displaystyle \mathbb {H} } . An important application of spinh groups is for spinh structures.

Definition

The spin group Spin ( n ) {\displaystyle \operatorname {Spin} (n)} is a double cover of the special orthogonal group SO ( n ) {\displaystyle \operatorname {SO} (n)} , hence Z 2 {\displaystyle \mathbb {Z} _{2}} acts on it with Spin ( n ) / Z 2 SO ( n ) {\displaystyle \operatorname {Spin} (n)/\mathbb {Z} _{2}\cong \operatorname {SO} (n)} . Furthermore, Z 2 {\displaystyle \mathbb {Z} _{2}} also acts on the first symplectic group Sp ( 1 ) {\displaystyle \operatorname {Sp} (1)} through the antipodal identification y y {\displaystyle y\sim -y} . The spinh group is then:[1]

Spin h ( n ) := ( Spin ( n ) × Sp ( 1 ) ) / Z 2 {\displaystyle \operatorname {Spin} ^{\mathrm {h} }(n):=\left(\operatorname {Spin} (n)\times \operatorname {Sp} (1)\right)/\mathbb {Z} _{2}}

mit ( x , y ) ( x , y ) {\displaystyle (x,y)\sim (-x,-y)} . It is also denoted Spin H ( n ) {\displaystyle \operatorname {Spin} ^{\mathbb {H} }(n)} . Using the exceptional isomorphism Spin ( 3 ) Sp ( 1 ) {\displaystyle \operatorname {Spin} (3)\cong \operatorname {Sp} (1)} , one also has Spin h ( n ) = Spin 3 ( n ) {\displaystyle \operatorname {Spin} ^{\mathrm {h} }(n)=\operatorname {Spin} ^{3}(n)} with:

Spin k ( n ) := ( Spin ( n ) × Spin ( k ) ) / Z 2 . {\displaystyle \operatorname {Spin} ^{k}(n):=\left(\operatorname {Spin} (n)\times \operatorname {Spin} (k)\right)/\mathbb {Z} _{2}.}

Low-dimensional examples

  • Spin h ( 1 ) Sp ( 1 ) SU ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {h} }(1)\cong \operatorname {Sp} (1)\cong \operatorname {SU} (2)} , induced by the isomorphism Spin ( 1 ) O ( 1 ) Z 2 {\displaystyle \operatorname {Spin} (1)\cong \operatorname {O} (1)\cong \mathbb {Z} _{2}}
  • Spin h ( 2 ) U ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {h} }(2)\cong \operatorname {U} (2)} , induced by the exceptional isomorphism Spin ( 2 ) U ( 1 ) SO ( 2 ) {\displaystyle \operatorname {Spin} (2)\cong \operatorname {U} (1)\cong \operatorname {SO} (2)} - Since furthermore Spin ( 3 ) Sp ( 1 ) SU ( 2 ) {\displaystyle \operatorname {Spin} (3)\cong \operatorname {Sp} (1)\cong \operatorname {SU} (2)} , one also has Spin h ( 2 ) Spin c ( 3 ) {\displaystyle \operatorname {Spin} ^{\mathrm {h} }(2)\cong \operatorname {Spin} ^{\mathrm {c} }(3)} .

Properties

For all higher abelian homotopy groups, one has:

π k Spin h ( n ) π k Spin ( n ) × π k Sp ( 1 ) π k SO ( n ) × π k ( S 3 ) {\displaystyle \pi _{k}\operatorname {Spin} ^{\mathrm {h} }(n)\cong \pi _{k}\operatorname {Spin} (n)\times \pi _{k}\operatorname {Sp} (1)\cong \pi _{k}\operatorname {SO} (n)\times \pi _{k}(S^{3})}

for k 2 {\displaystyle k\geq 2} .

See also

Literature

  • Christian Bär (1999). "Elliptic symbols". Mathematische Nachrichten. 201 (1).

References

  1. ^ Bär 1999, page 16
Retrieved from "https://en.wikipedia.org/w/index.php?title=Spinh_group&oldid=1302390583"