Spherium

The "spherium" model consists of two electrons trapped on the surface of a sphere of radius R{\displaystyle R}. It has been used by Berry and collaborators [1] to understand both weakly and strongly correlated systems and to suggest an "alternating" version of Hund's rule. Seidl studies this system in the context of density functional theory (DFT) to develop new correlation functionals within the adiabatic connection.[2]

Definition and solution

The electronic Hamiltonian in atomic units is

H^122222+1あなた{\displaystyle {\hat {H}}=-{\frac {\nabla _{1}^{2}}{2}}-{\frac {\nabla _{2}^{2}}{2}}+{\frac {1}{u}}}

where あなた{\displaystyle u} is the interelectronic distance. For the singlet S states, it can be then shown[3] that the wave functionSあなた{\displaystyle S(u)} satisfies the Schrödinger equation

あなた24R21d2Sあなたdあなた2+3あなた4R21あなたdSあなたdあなた+1あなたSあなたESあなた{\displaystyle \left({\frac {u^{2}}{4R^{2}}}-1\right){\frac {d^{2}S(u)}{du^{2}}}+\left({\frac {3u}{4R^{2}}}-{\frac {1}{u}}\right){\frac {dS(u)}{du}}+{\frac {1}{u}}S(u)=ES(u)}

By introducing the dimensionless variable ×あなた/2R{\displaystyle x=u/2R}, this becomes a Heun equation with singular points at ×10+1{\displaystyle x=-1,0,+1}. Based on the known solutions of the Heun equation, we seek wave functions of the form

Sあなた0sあなた{\displaystyle S(u)=\sum _{k=0}^{\infty }s_{k}\,u^{k}}

and substitution into the previous equation yields the recurrence relation

s+2s+1+[+214R2E]s+22{\displaystyle s_{k+2}={\frac {s_{k+1}+\left[k(k+2){\frac {1}{4R^{2}}}-E\right]s_{k}}{(k+2)^{2}}}}

with the starting values s0s11{\displaystyle s_{0}=s_{1}=1}. Thus, the Kato cusp condition is

S0S01{\displaystyle {\frac {S'(0)}{S(0)}}=1}.

The wave function reduces to the polynomial

Snメートルあなた0nsあなた{\displaystyle S_{n,m}(u)=\sum _{k=0}^{n}s_{k}\,u^{k}}

(where メートル{\displaystyle m} the number of roots between 0{\displaystyle 0} and 2R{\displaystyle 2R}) if, and only if, sn+1sn+20{\displaystyle s_{n+1}=s_{n+2}=0}. Thus, the energy En,m{\displaystyle E_{n,m}} is a root of the polynomial equation sn+1=0{\displaystyle s_{n+1}=0} (where degsn+1=(n+1)/2{\displaystyle \deg s_{n+1}=\lfloor (n+1)/2\rfloor }) and the corresponding radius Rn,m{\displaystyle R_{n,m}} is found from the previous equation which yields

Rn,m2En,m=n2(n2+1){\displaystyle R_{n,m}^{2}E_{n,m}={\frac {n}{2}}\left({\frac {n}{2}}+1\right)}

Sn,m(u){\displaystyle S_{n,m}(u)} is the exact wave function of the m{\displaystyle m}-th excited state of singlet S symmetry for the radius Rn,m{\displaystyle R_{n,m}}.

We know from the work of Loos and Gill [3] that the HF energy of the lowest singlet S state is EHF=1/R{\displaystyle E_{\rm {HF}}=1/R}. It follows that the exact correlation energy for R=3/2{\displaystyle R={\sqrt {3}}/2} is Ecorr=12/30.1547{\displaystyle E_{\rm {corr}}=1-2/{\sqrt {3}}\approx -0.1547} which is much larger than the limiting correlation energies of the helium-like ions (0.0467{\displaystyle -0.0467}) or Hooke's atoms (0.0497{\displaystyle -0.0497}). This confirms the view that electron correlation on the surface of a sphere is qualitatively different from that in three-dimensional physical space.

Spherium on a 3-sphere

LoosとGill [ 4 ]は、クーロン反発する3次元球に閉じ込められた2つの電子の場合を考察した。彼らは基底状態エネルギーを( )と報告している。 .0476{\displaystyle -.0476}

参照

参考文献

  1. ^エズラ, GS; ベリー, RS (1982)、「球面上の2粒子の相関」、Physical Review A25 (3): 1513– 1527、Bibcode : 1982PhRvA..25.1513Edoi : 10.1103/PhysRevA.25.1513
  2. ^ Seidl, M. (2007)、「密度汎関数理論における断熱接続:球面上の2つの電子」、Physical Review A75 (6) 062506、Bibcode2007PhRvA..75a2506Pdoi10.1103/PhysRevA.75.062506
  3. ^ a b Loos, P.-F.; Gill, PMW (2009)、「球面上の2つの電子の基底状態」、Physical Review A79 (6) 062517、arXiv : 1002.3398Bibcode : 2009PhRvA..79f2517Ldoi : 10.1103/PhysRevA.79.062517S2CID 59364477 
  4. ^ Loos, P.-F.; Gill, PMW (2010), 「球状体の励起状態」, Molecular Physics , 108 ( 19– 20): 2527– 2532, arXiv : 1004.3641 , Bibcode : 2010MolPh.108.2527L , doi : 10.1080/00268976.2010.508472 , S2CID 43949268 

さらに読む