Universal homeomorphism

In algebraic geometry, a universal homeomorphism is a morphism of schemes f : X Y {\displaystyle f:X\to Y} such that, for each morphism Y Y {\displaystyle Y'\to Y} , the base change X × Y Y Y {\displaystyle X\times _{Y}Y'\to Y'} is a homeomorphism of topological spaces.

A morphism of schemes is a universal homeomorphism if and only if it is integral, radicial and surjective.[1] In particular, a morphism of locally of finite type is a universal homeomorphism if and only if it is finite, radicial and surjective.

For example, an absolute Frobenius morphism is a universal homeomorphism.

References

  1. ^ EGA IV4, 18.12.11.
  • Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32. doi:10.1007/bf02732123. MR 0238860.
  • Universal homeomorphisms and the étale topology
  • Do pushouts along universal homeomorphisms exist?
Retrieved from "https://en.wikipedia.org/w/index.php?title=Universal_homeomorphism&oldid=910284879"