Bogdanov map

Chaotic 2D map related to the Bogdanov–Takens bifurcation
Example with ε=0, k=1.2, μ=0.

In dynamical systems theory, the Bogdanov map is a chaotic 2D map related to the Bogdanov–Takens bifurcation. It is given by the transformation:

{ x n + 1 = x n + y n + 1 y n + 1 = y n + ϵ y n + k x n ( x n 1 ) + μ x n y n {\displaystyle {\begin{cases}x_{n+1}=x_{n}+y_{n+1}\\y_{n+1}=y_{n}+\epsilon y_{n}+kx_{n}(x_{n}-1)+\mu x_{n}y_{n}\end{cases}}}

The Bogdanov map is named after Rifkat Bogdanov.

See also

References

  • DK Arrowsmith, CM Place, An introduction to dynamical systems, Cambridge University Press, 1990.
  • Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
  • Bogdanov, R. "Bifurcations of a Limit Cycle for a Family of Vector Fields on the Plane." Selecta Math. Soviet 1, 373–388, 1981.


Retrieved from "https://en.wikipedia.org/w/index.php?title=Bogdanov_map&oldid=1099234305"