Exotic affine space

In algebraic geometry, an exotic affine space is a complex algebraic variety that is diffeomorphic to R2n{\displaystyle \mathbb {R} ^{2n}} for some n, but is not isomorphic as an algebraic variety to Cn{\displaystyle \mathbb {C} ^{n}}.[1][2][3] An example of an exotic C3{\displaystyle \mathbb {C} ^{3}} is the Koras–Russell cubic threefold,[4] which is the subset of C4{\displaystyle \mathbb {C} ^{4}} defined by the polynomial equation

{(z1,z2,z3,z4)C4|z1+z12z2+z33+z42=0}.{\displaystyle \{(z_{1},z_{2},z_{3},z_{4})\in \mathbb {C} ^{4}|z_{1}+z_{1}^{2}z_{2}+z_{3}^{3}+z_{4}^{2}=0\}.}

References

  1. ^Snow, Dennis (2004), "The role of exotic affine spaces in the classification of homogeneous affine varieties", Algebraic Transformation Groups and Algebraic Varieties: Proceedings of the Conference Interesting Algebraic Varieties Arising in Algebraic Transformation Group Theory Held at the Erwin Schrödinger Institute, Vienna, October 22-26, 2001, Encyclopaedia of Mathematical Sciences, vol. 132, Berlin: Springer, pp. 169–175, CiteSeerX 10.1.1.140.6908, doi:10.1007/978-3-662-05652-3_9, ISBN 978-3-642-05875-2, MR 2090674.
  2. ^Freudenburg, G.; Russell, P. (2005), "Open problems in affine algebraic geometry", Affine algebraic geometry, Contemporary Mathematics, vol. 369, Providence, RI: American Mathematical Society, pp. 1–30, doi:10.1090/conm/369/06801, ISBN 9780821834763, MR 2126651.
  3. ^Zaidenberg, Mikhail (2000). "On exotic algebraic structures on affine spaces". St. Petersburg Mathematical Journal. 11 (5): 703–760. arXiv:alg-geom/9506005. Bibcode:1995alg.geom..6005Z.
  4. ^Makar-Limanov, L. (1996), "On the hypersurface x+x2+y+z2=t3=0{\displaystyle x+x^{2}+y+z^{2}=t^{3}=0} in C4{\displaystyle \mathbb {C} ^{4}} or a C3{\displaystyle \mathbb {C} ^{3}}-like threefold which is not C3{\displaystyle \mathbb {C} ^{3}}", Israel Journal of Mathematics, 96 (2): 419–429, doi:10.1007/BF02937314