H3K79me2

ヒストンH3の尾部のヒストンメチル化

H3K79me2は、DNAパッケージングタンパク質であるヒストンH3のエピジェネティック修飾です。これは、ヒストンH3タンパク質の79番目のリジン残基のジメチル化を示すマークです。H3K79me2は、活性遺伝子の転写領域で検出されます。

命名法

H3K79me2はヒストンH3タンパク質サブユニット上の リジン79のジメチル化を示す: [1]

略語 意味
H3 ヒストンのH3ファミリー
K リジンの標準略語
79 アミノ酸残基の位置

(N末端から数えて)

自分 メチル基
2 付加されたメチル基の数

リジンメチル化

メチル化-リジン

この図はリジン残基の進行性メチル化を示しています。ジメチル化(左から3番目)はH3K79me2に存在するメチル化を示しています。[2]

ヒストンの修飾

真核細胞のゲノムDNAは、ヒストンと呼ばれる特殊なタンパク質分子に巻き付いています。DNAがループ状に配列した複合体はクロマチンと呼ばれています。クロマチンの基本構造単位はヌクレオソームで、これはヒストンのコアオクタマー(H2A、H2B、H3、H4)とリンカーヒストン、そして約180塩基対のDNAで構成されています。これらのコアヒストンはリジンとアルギニン残基を豊富に含んでいます。これらのヒストンのカルボキシル(C)末端は、ヒストン間相互作用だけでなく、ヒストン-DNA相互作用にも寄与しています。アミノ(N)末端の荷電末端は、H3K36me3に見られるような翻訳後修飾を受ける部位です。[3] [4]

エピジェネティックな意味合い

ヒストン修飾複合体またはクロマチンリモデリング複合体によるヒストンテールの翻訳後修飾は細胞により解釈され、複雑で組み合わせた転写出力につながる。ヒストンコードは、特定領域のヒストン間の複雑な相互作用によって遺伝子の発現を指示すると考えられている。[5]ヒストンに対する現在の理解と解釈は、2つの大規模プロジェクト、ENCODEとエピゲノムロードマップに由来する。[6]エピゲノム研究の目的は、ゲノム全体のエピジェネティックな変化を調査することだった。これにより、異なるタンパク質やヒストン修飾の相互作用をグループ化することでゲノム領域を定義するクロマチン状態が生まれた。ショウジョウバエ細胞でクロマチン状態は、ゲノム内のタンパク質の結合場所を見ることで調査された。ChIPシーケンスを使用すると、異なるバンドで特徴付けられるゲノムの領域が明らかになった。[7]ショウジョウバエにおいても様々な発生段階がプロファイリングされ、ヒストン修飾の関連性に重点が置かれました。[8]得られたデータの分析により、ヒストン修飾に基づくクロマチン状態の定義が導き出されました。[9]

ヒトゲノムはクロマチン状態によってアノテーションされています。これらのアノテーション状態は、ゲノム配列に依存しない新しいゲノムアノテーション方法として利用できます。DNA配列からの独立性は、ヒストン修飾のエピジェネティックな性質を強めます。クロマチン状態は、エンハンサーなど、配列が明確に定義されていない調節要素を同定する際にも有用です。この追加レベルのアノテーションにより、細胞特異的な遺伝子制御をより深く理解することが可能になります。[10]

H3K79メチル化には3つの形態(H3K79me1、H3K79me2、H3K79me3)があり、酵母ではDOT1、哺乳類ではDOT1Lによって触媒されます。H3K79メチル化はDNA損傷応答に関与し、ヌクレオチド除去修復と姉妹染色分体組換え修復において複数の役割を果たします。[11]

H3K79ジメチル化は活性遺伝子の転写領域で検出されている。[2]

方法

ヒストンマーク H3K36me3 はさまざまな方法で検出できます。

1. クロマチン免疫沈降シークエンシング(ChIPシークエンシング)は、標的タンパク質に結合し免疫沈降されたDNAの濃縮量を測定する。この方法は優れた最適化をもたらし、細胞内で起こるDNA-タンパク質結合を明らかにするためにin vivoで用いられる。ChIP-Seqは、ゲノム領域に沿った様々なヒストン修飾に対応する様々なDNA断片を同定・定量化するために用いられる。[12]

2. ミクロコッカスヌクレアーゼシーケンシング(MNase-seq)は、適切に配置されたヌクレオソームが結合する領域を調べるために使用されます。ミクロコッカスヌクレアーゼ酵素を用いることで、ヌクレオソームの位置を特定します。適切に配置されたヌクレオソームでは、配列が濃縮されていることが観察されます。[13]

3. トランスポザーゼアクセスクロマチンシーケンシングアッセイ(ATAC-seq)は、ヌクレオソームフリー領域(オープンクロマチン)を調べるために使用されます。このアッセイでは、活性化したTn5トランスポゾンを用いてヌクレオソームの局在を明らかにします。[14] [15] [16]

参照

参考文献

  1. ^ Huang, Suming; Litt, Michael D.; Ann Blakey, C. (2015-11-30).エピジェネティック遺伝子発現と制御. Elsevier Science. pp.  21– 38. ISBN 978-0-12-799958-6
  2. ^ ab Farooq, Zeenat; Banday, Shahid; Pandita, Tej K.; Altaf, Mohammad (2016). 「ヒストンH3K79メチル化の多様な側面」. Mutation Research/Reviews in Mutation Research . 768 : 46– 52. Bibcode :2016MRRMR.768...46F. doi :10.1016/j.mrrev.2016.03.005. PMC 4889126. PMID 27234562  . 
  3. ^ Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007年12月). 「連結結合モジュールによるクロマチン修飾の多価的関与」. Nature Reviews. Molecular Cell Biology . 8 (12): 983–94 . doi :10.1038/nrm2298. PMC 4690530. PMID 18037899  . 
  4. ^ Kouzarides T (2007年2月). 「クロマチン修飾とその機能」. Cell . 128 (4): 693– 705. doi : 10.1016/j.cell.2007.02.005 . PMID  17320507.
  5. ^ Jenuwein T, Allis CD (2001年8月). 「ヒストンコードの翻訳」. Science . 293 (5532): 1074–80 . CiteSeerX 10.1.1.453.900 . doi :10.1126/science.1063127. PMID  11498575. 
  6. ^ Birney E , Stamatoyannopoulos JA , Dutta A , Guigó R, Gingeras TR, Margulies EH, et al. (ENCODEプロジェクトコンソーシアム) (2007年6月). 「ENCODEパイロットプロジェクトによるヒトゲノム1%の機能要素の同定と解析」. Nature . 447 (7146): 799– 816. Bibcode :2007Natur.447..799B. doi :10.1038/nature05874. PMC 2212820. PMID 17571346  . 
  7. ^ フィリオン GJ、ファン ベンメル JG、ブラウンシュヴァイク U、タルハウト W、カインド J、ウォード LD、ブルグマン W、デ カストロ IJ、ケルクホーフェン RM、ブッセメーカー HJ、ファン ステンセル B (2010 年 10 月)。 「体系的なタンパク質位置マッピングにより、ショウジョウバエ細胞における 5 つの主要なクロマチン タイプが明らかになりました。」セル143 (2): 212–24 .土井:10.1016/j.cell.2010.09.009。PMC 3119929PMID  20888037。 
  8. ^ Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al. (modENCODE Con​​sortium) (2010年12月). 「ショウジョウバエmodENCODEによる機能要素と制御回路の同定」. Science . 330 (6012): 1787–97 . Bibcode :2010Sci...330.1787R. doi :10.1126/science.11 ​​98374. PMC 3192495. PMID  21177974 . 
  9. ^ Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, et al. (2011年3月). 「ショウジョウバエ(Drosophila melanogaster)におけるクロマチンランドスケープの包括的解析」. Nature . 471 (7339): 480–5 . Bibcode :2011Natur.471..480K. doi :10.1038/nature09725. PMC 3109908. PMID  21179089 . 
  10. ^ Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, et al. (Roadmap Epigenomics Consortium) (2015年2月). 「111のヒトリファレンスエピゲノムの統合解析」. Nature . 518 (7539): 317–30 . Bibcode :2015Natur.518..317.. doi :10.1038/nature14248. PMC 4530010. PMID 25693563  . 
  11. ^ Chen Y, Zhu WG (2016年7月). 「DNA損傷に対するヒストンおよび非ヒストンリジンメチル化の生物学的機能と制御」. Acta Biochim. Biophys. Sin. (上海) . 48 (7): 603–16 . doi : 10.1093/abbs/gmw050 . PMID  27217472.
  12. ^ 「全ゲノムクロマチンIPシーケンシング(ChIP-Seq)」(PDF)イルミナ. 2019年10月23日閲覧
  13. ^ "MAINE-Seq/Mnase-Seq". illumina . 2019年10月23日閲覧
  14. ^ Buenrostro, Jason D.; Wu, Beijing; Chang, Howard Y.; Greenleaf, William J. (2015). 「ATAC-seq:ゲノムワイドなクロマチンアクセシビリティのアッセイ法」Current Protocols in Molecular Biology . 109 : 21.29.1–21.29.9. doi :10.1002/0471142727.mb2129s109. ISBN 978-0-471-14272-0. PMC  4374986 . PMID  25559105 .
  15. ^ Schep, Alicia N.; Buenrostro, Jason D.; Denny, Sarah K.; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J. (2015). 「構造化ヌクレオソームフィンガープリントは、調節領域内のクロマチン構造の高解像度マッピングを可能にする」. Genome Research . 25 (11): 1757– 1770. Bibcode :2015GenRe..25.1757S. doi :10.1101/gr.192294.115. ISSN  1088-9051. PMC 4617971. PMID 26314830  . 
  16. ^ Song, L.; Crawford, GE (2010). 「DNase-seq:哺乳類細胞からゲノム全体にわたる活性遺伝子調節エレメントをマッピングするための高解像度技術」Cold Spring Harbor Protocols . 2010 (2) pdb.prot5384. doi :10.1101/pdb.prot5384. ISSN  1559-6095. PMC 3627383. PMID 20150147  . 
「https://en.wikipedia.org/w/index.php?title=H3K79me2&oldid=1315410770」より取得