数学において、エリック・ハロルド・ネヴィルにちなんで名付けられたネヴィル・シータ関数[ 1 ]は、次のように定義されます。[ 2 ] [ 3 ] [ 4 ]




ここで、K(m)は第 1 種の完全楕円積分、は 楕円ノームです。 

関数 θ p (z,m)は、q(m)という名称で定義され、θ p (z,q)と表記されることもある(例:NIST [ 5 ] )。また、関数はτパラメータθ p (z|τ)を用いて表記されることもある(ただし、 ) 。 
他の機能との関係
ネヴィル・シータ関数はヤコビ・シータ関数で表される[ 5 ]




どこ。 
ネヴィル・シータ関数はヤコビの楕円関数と関連している。pq(u,m)がヤコビの楕円関数(pとqはs,c,n,dのいずれか)である場合、

例




対称




複雑な3Dプロット
注記
参考文献