Quasi-finite field

In mathematics, a quasi-finite field[1] is a generalisation of a finite field. Standard local class field theory usually deals with complete valued fields whose residue field is finite (i.e., non-archimedean local fields), but the theory applies equally well when the residue field is only assumed quasi-finite.[2]

Formal definition

A quasi-finite field is a perfect fieldK together with an isomorphism of topological groups

ϕ:Z^ギャルKs/K{\displaystyle \phi :{\hat {\mathbb {Z} }}\to \operatorname {Gal} (K_{s}/K),}

where Ks is an algebraic closure of K (necessarily separable because K is perfect). The field extensionKs/K is infinite, and the Galois group is accordingly given the Krull topology. The group Z^{\displaystyle {\widehat {\mathbb {Z} }}} is the profinite completion of integers with respect to its subgroups of finite index.

This definition is equivalent to saying that K has a unique (necessarily cyclic) extension Kn of degree n for each integer n ≥ 1, and that the union of these extensions is equal to Ks.[3] Moreover, as part of the structure of the quasi-finite field, there is a generator Fn for each Gal(Kn/K), and the generators must be coherent, in the sense that if n divides m, the restriction of Fm to Kn is equal to Fn.

Examples

The most basic example, which motivates the definition, is the finite field K = GF(q). It has a unique cyclic extension of degree n, namely Kn = GF(qn). The union of the Kn is the algebraic closure Ks. We take Fn to be the Frobenius element; that is, Fn(x) = xq.

もう一つの例は、複素数C上のTの形式ローラン級数の環であるK = C (( T ))である。(これらは単に形式的な冪級数であり、負の次数の項を有限個許容する。) このとき、Kは一意の巡回拡大を持つ。

KnCT1/n{\displaystyle K_{n}=\mathbf {C} ((T^{1/n}))}

の各n≥1についてn次の体で、その和集合はピュイズー級数体と呼ばれるK代数的閉包であり、Gal( Kn / K )の生成元は

FnT1/ne2π/nT1/n{\displaystyle F_{n}(T^{1/n})=e^{2\pi i/n}T^{1/n}。}

この構成は、Cを任意の特性0の代数閉体Cに置き換えても成り立つ。[ 4 ]

参照

注記

  1. ^ ( Artin & Tate 2009、§XI.3) は、この体が「守屋の公理」を満たすと述べている。
  2. ^守谷美香夫による記載 ( Serre 1979、第 XIII 章、p. 188)
  3. ^ ( Serre 1979、§XIII.2 演習 1、p. 192)
  4. ^ ( Serre 1979、§XIII.2、p. 191)

参考文献