Diagram of the Schiffler Point Triangle △ABC
Lines joining the midpoints of each angle bisector to the vertices of △ABC
Lines perpendicular to each angle bisector at their midpoints
In geometry , the Schiffler point of a triangle is a triangle center , a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985).
Definition A triangle △ABC with the incenter I has its Schiffler point at the point of concurrence of the Euler lines of the four triangles △BCI , △CAI , △ABI , △ABC . Schiffler's theorem states that these four lines all meet at a single point.[ 1]
Coordinates Trilinear coordinates for the Schiffler point are
1 cos B + cos C : 1 cos C + cos A : 1 cos A + cos B {\displaystyle {\frac {1}{\cos B+\cos C}}:{\frac {1}{\cos C+\cos A}}:{\frac {1}{\cos A+\cos B}}} [ 1] or, equivalently,
b + c − a b + c : c + a − b c + a : a + b − c a + b {\displaystyle {\frac {b+c-a}{b+c}}:{\frac {c+a-b}{c+a}}:{\frac {a+b-c}{a+b}}} where a, b, c denote the side lengths of triangle △ABC .
References
Further reading Hatzipolakis, Antreas P.; van Lamoen, Floor; Wolk, Barry; Yiu, Paul (2001). "Concurrency of four Euler lines" . Forum Geometricorum . 1 : 59– 68. MR 1891516 . Nguyen, Khoa Lu (2005). "On the complement of the Schiffler point" . Forum Geometricorum . 5 : 149– 164. MR 2195745 . Archived from the original on 2007-01-15. Retrieved 2007-01-17 . Schiffler, Kurt (1985). "Problem 1018" (PDF) . Crux Mathematicorum . 11 : 51. Retrieved September 24, 2023 . Veldkamp, G. R. & van der Spek, W. A. (1986). "Solution to Problem 1018" (PDF) . Crux Mathematicorum . 12 : 150– 152. Retrieved September 24, 2023 . Thas, Charles (2004). "On the Schiffler center" . Forum Geometricorum . 4 : 85– 95. MR 2081772 . Archived from the original on 2007-03-19. Retrieved 2007-01-17 .
External links