Convex space

In mathematics, a convex space (or barycentric algebra) is a space in which it is possible to take convex combinations of any finite set of points.[1][2]

Formal Definition

A convex space can be defined as a set X{\displaystyle X} equipped with a binary convex combination operation cλ:X×XX{\displaystyle c_{\lambda }:X\times X\rightarrow X} for each λ[0,1]{\displaystyle \lambda \in [0,1]} satisfying:

  • c0(x,y)=x{\displaystyle c_{0}(x,y)=x}
  • c1(x,y)=y{\displaystyle c_{1}(x,y)=y}
  • cλ(x,x)=x{\displaystyle c_{\lambda }(x,x)=x}
  • cλ(x,y)=c1λ(y,x){\displaystyle c_{\lambda }(x,y)=c_{1-\lambda }(y,x)}
  • cλ(x,cμ(y,z))=cλμ(cλ(1μ)1λμ(x,y),z){\displaystyle c_{\lambda }(x,c_{\mu }(y,z))=c_{\lambda \mu }\left(c_{\frac {\lambda (1-\mu )}{1-\lambda \mu }}(x,y),z\right)} (for λμ1{\displaystyle \lambda \mu \neq 1})

From this, it is possible to define an n-ary convex combination operation, parametrised by an n-tuple (λ1,,λn){\displaystyle (\lambda _{1},\dots ,\lambda _{n})}, where iλi=1{\displaystyle \sum _{i}\lambda _{i}=1}.

Examples

Any real affine space is a convex space. More generally, any convex subset of a real affine space is a convex space.

History

Convex spaces have been independently invented many times and given different names, dating back at least to Stone (1949).[3] They were also studied by Neumann (1970)[4] and Świrszcz (1974),[5] among others.

Herstein and Milnor (1953)[6] used convex spaces to prove the Mixture-space theorem.

References

  1. ^"Convex space". nLab. Retrieved 3 April 2023.
  2. ^Fritz, Tobias (2009). "Convex Spaces I: Definition and Examples". arXiv:0903.5522 [math.MG].
  3. ^Stone, Marshall Harvey (1949). "Postulates for the barycentric calculus". Annali di Matematica Pura ed Applicata. 29: 25–30. doi:10.1007/BF02413910. S2CID 122252152.
  4. ^Neumann, Walter David (1970). "On the quasivariety of convex subsets of affine spaces". Archiv der Mathematik. 21: 11–16. doi:10.1007/BF01220869. S2CID 124051153.
  5. ^Świrszcz, Tadeusz (1974). "Monadic functors and convexity". Bulletin l'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques. 22: 39–42.
  6. ^Herstein, Israel Nathan; Milnor, John (1953). "An Axiomatic Approach to Measurable Utility". Econometrica. 21 (2): 291–297. doi:10.2307/1905540. JSTOR 1905540.