Gent hyperelastic model

Model of rubber elasticity

The Gent hyperelastic material model [1] is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value I m {\displaystyle I_{m}} .

The strain energy density function for the Gent model is [1]

W = μ J m 2 ln ( 1 I 1 3 J m ) {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)}

where μ {\displaystyle \mu } is the shear modulus and J m = I m 3 {\displaystyle J_{m}=I_{m}-3} .

In the limit where J m {\displaystyle J_{m}\rightarrow \infty } , the Gent model reduces to the Neo-Hookean solid model. This can be seen by expressing the Gent model in the form

W = μ 2 x ln [ 1 ( I 1 3 ) x ]   ;     x := 1 J m {\displaystyle W=-{\cfrac {\mu }{2x}}\ln \left[1-(I_{1}-3)x\right]~;~~x:={\cfrac {1}{J_{m}}}}

A Taylor series expansion of ln [ 1 ( I 1 3 ) x ] {\displaystyle \ln \left[1-(I_{1}-3)x\right]} around x = 0 {\displaystyle x=0} and taking the limit as x 0 {\displaystyle x\rightarrow 0} leads to

W = μ 2 ( I 1 3 ) {\displaystyle W={\cfrac {\mu }{2}}(I_{1}-3)}

which is the expression for the strain energy density of a Neo-Hookean solid.

Several compressible versions of the Gent model have been designed. One such model has the form[2] (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer[3] for compressible Gent models).

W = μ J m 2 ln ( 1 I 1 3 J m ) + κ 2 ( J 2 1 2 ln J ) 4 {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)+{\cfrac {\kappa }{2}}\left({\cfrac {J^{2}-1}{2}}-\ln J\right)^{4}}

where J = det ( F ) {\displaystyle J=\det({\boldsymbol {F}})} , κ {\displaystyle \kappa } is the bulk modulus, and F {\displaystyle {\boldsymbol {F}}} is the deformation gradient.

Consistency condition

We may alternatively express the Gent model in the form

W = C 0 ln ( 1 I 1 3 J m ) {\displaystyle W=C_{0}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)}

For the model to be consistent with linear elasticity, the following condition has to be satisfied:

2 W I 1 ( 3 ) = μ {\displaystyle 2{\cfrac {\partial W}{\partial I_{1}}}(3)=\mu }

where μ {\displaystyle \mu } is the shear modulus of the material. Now, at I 1 = 3 ( λ i = λ j = 1 ) {\displaystyle I_{1}=3(\lambda _{i}=\lambda _{j}=1)} ,

W I 1 = C 0 J m {\displaystyle {\cfrac {\partial W}{\partial I_{1}}}=-{\cfrac {C_{0}}{J_{m}}}}

Therefore, the consistency condition for the Gent model is

2 C 0 J m = μ C 0 = μ J m 2 {\displaystyle -{\cfrac {2C_{0}}{J_{m}}}=\mu \,\qquad \implies \qquad C_{0}=-{\cfrac {\mu J_{m}}{2}}}

The Gent model assumes that J m 1 {\displaystyle J_{m}\gg 1}

Stress-deformation relations

The Cauchy stress for the incompressible Gent model is given by

σ = p   I + 2   W I 1   B = p   I + μ J m J m I 1 + 3   B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {I}}}+2~{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}=-p~{\boldsymbol {\mathit {I}}}+{\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}~{\boldsymbol {B}}}

Uniaxial extension

Stress-strain curves under uniaxial extension for Gent model compared with various hyperelastic material models.

For uniaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} -direction, the principal stretches are λ 1 = λ ,   λ 2 = λ 3 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{2}=\lambda _{3}} . From incompressibility λ 1   λ 2   λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 2 = λ 3 2 = 1 / λ {\displaystyle \lambda _{2}^{2}=\lambda _{3}^{2}=1/\lambda } . Therefore,

I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 2 λ   . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {2}{\lambda }}~.}

The left Cauchy-Green deformation tensor can then be expressed as

B = λ 2   n 1 n 1 + 1 λ   ( n 2 n 2 + n 3 n 3 )   . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda }}~(\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3})~.}

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

σ 11 = p + λ 2 μ J m J m I 1 + 3   ;     σ 22 = p + μ J m λ ( J m I 1 + 3 ) = σ 33   . {\displaystyle \sigma _{11}=-p+{\cfrac {\lambda ^{2}\mu J_{m}}{J_{m}-I_{1}+3}}~;~~\sigma _{22}=-p+{\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}=\sigma _{33}~.}

If σ 22 = σ 33 = 0 {\displaystyle \sigma _{22}=\sigma _{33}=0} , we have

p = μ J m λ ( J m I 1 + 3 )   . {\displaystyle p={\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}~.}

Therefore,

σ 11 = ( λ 2 1 λ ) ( μ J m J m I 1 + 3 )   . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.}

The engineering strain is λ 1 {\displaystyle \lambda -1\,} . The engineering stress is

T 11 = σ 11 / λ = ( λ 1 λ 2 ) ( μ J m J m I 1 + 3 )   . {\displaystyle T_{11}=\sigma _{11}/\lambda =\left(\lambda -{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.}

Equibiaxial extension

For equibiaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} and n 2 {\displaystyle \mathbf {n} _{2}} directions, the principal stretches are λ 1 = λ 2 = λ {\displaystyle \lambda _{1}=\lambda _{2}=\lambda \,} . From incompressibility λ 1   λ 2   λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 3 = 1 / λ 2 {\displaystyle \lambda _{3}=1/\lambda ^{2}\,} . Therefore,

I 1 = λ 1 2 + λ 2 2 + λ 3 2 = 2   λ 2 + 1 λ 4   . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=2~\lambda ^{2}+{\cfrac {1}{\lambda ^{4}}}~.}

The left Cauchy-Green deformation tensor can then be expressed as

B = λ 2   n 1 n 1 + λ 2   n 2 n 2 + 1 λ 4   n 3 n 3   . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda ^{2}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {1}{\lambda ^{4}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.}

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

σ 11 = ( λ 2 1 λ 4 ) ( μ J m J m I 1 + 3 ) = σ 22   . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=\sigma _{22}~.}

The engineering strain is λ 1 {\displaystyle \lambda -1\,} . The engineering stress is

T 11 = σ 11 λ = ( λ 1 λ 5 ) ( μ J m J m I 1 + 3 ) = T 22   . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{5}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=T_{22}~.}

Planar extension

Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the n 1 {\displaystyle \mathbf {n} _{1}} directions with the n 3 {\displaystyle \mathbf {n} _{3}} direction constrained, the principal stretches are λ 1 = λ ,   λ 3 = 1 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{3}=1} . From incompressibility λ 1   λ 2   λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 = 1 / λ {\displaystyle \lambda _{2}=1/\lambda \,} . Therefore,

I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 1 λ 2 + 1   . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~.}

The left Cauchy-Green deformation tensor can then be expressed as

B = λ 2   n 1 n 1 + 1 λ 2   n 2 n 2 + n 3 n 3   . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda ^{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.}

If the directions of the principal stretches are oriented with the coordinate basis vectors, we have

σ 11 = ( λ 2 1 λ 2 ) ( μ J m J m I 1 + 3 )   ;     σ 22 = 0   ;     σ 33 = ( 1 1 λ 2 ) ( μ J m J m I 1 + 3 )   . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~;~~\sigma _{22}=0~;~~\sigma _{33}=\left(1-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.}

The engineering strain is λ 1 {\displaystyle \lambda -1\,} . The engineering stress is

T 11 = σ 11 λ = ( λ 1 λ 3 ) ( μ J m J m I 1 + 3 )   . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{3}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.}

Simple shear

The deformation gradient for a simple shear deformation has the form[4]

F = 1 + γ   e 1 e 2 {\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}}

where e 1 , e 2 {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}} are reference orthonormal basis vectors in the plane of deformation and the shear deformation is given by

γ = λ 1 λ   ;     λ 1 = λ   ;     λ 2 = 1 λ   ;     λ 3 = 1 {\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1}

In matrix form, the deformation gradient and the left Cauchy-Green deformation tensor may then be expressed as

F = [ 1 γ 0 0 1 0 0 0 1 ]   ;     B = F F T = [ 1 + γ 2 γ 0 γ 1 0 0 0 1 ] {\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}}

Therefore,

I 1 = t r ( B ) = 3 + γ 2 {\displaystyle I_{1}=\mathrm {tr} ({\boldsymbol {B}})=3+\gamma ^{2}}

and the Cauchy stress is given by

σ = p   1 + μ J m J m γ 2   B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}~{\boldsymbol {B}}}

In matrix form,

σ = [ p + μ J m ( 1 + γ 2 ) J m γ 2 μ J m γ J m γ 2 0 μ J m γ J m γ 2 p + μ J m J m γ 2 0 0 0 p + μ J m J m γ 2 ] {\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}-p+{\cfrac {\mu J_{m}(1+\gamma ^{2})}{J_{m}-\gamma ^{2}}}&{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&0\\{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}&0\\0&0&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}\end{bmatrix}}}

References

  1. ^ a b Gent, A.N., 1996, A new constitutive relation for rubber, Rubber Chemistry Tech., 69, pp. 59-61.
  2. ^ Mac Donald, B. J., 2007, Practical stress analysis with finite elements, Glasnevin, Ireland.
  3. ^ Horgan, Cornelius O.; Saccomandi, Giuseppe (2004-11-01). "Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility". Journal of Elasticity. 77 (2): 123–138. doi:10.1007/s10659-005-4408-x. ISSN 1573-2681.
  4. ^ Ogden, R. W., 1984, Non-linear elastic deformations, Dover.

See also

Retrieved from "https://en.wikipedia.org/w/index.php?title=Gent_hyperelastic_model&oldid=1315844754"