Spinc group

Twisted spin group


In spin geometry, a spinc group (or complex spin group) is a Lie group obtained by the spin group through twisting with the first unitary group. C stands for the complex numbers, which are denoted C {\displaystyle \mathbb {C} } . An important application of spinc groups is for spinc structures, which are central for Seiberg–Witten theory.

Definition

The spin group Spin ( n ) {\displaystyle \operatorname {Spin} (n)} is a double cover of the special orthogonal group SO ( n ) {\displaystyle \operatorname {SO} (n)} , hence Z 2 {\displaystyle \mathbb {Z} _{2}} acts on it with Spin ( n ) / Z 2 SO ( n ) {\displaystyle \operatorname {Spin} (n)/\mathbb {Z} _{2}\cong \operatorname {SO} (n)} . Furthermore, Z 2 {\displaystyle \mathbb {Z} _{2}} also acts on the first unitary group U ( 1 ) {\displaystyle \operatorname {U} (1)} through the antipodal identification y y {\displaystyle y\sim -y} . The spinc group is then:[1][2][3][4]

Spin c ( n ) := ( Spin ( n ) × U ( 1 ) ) / Z 2 {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(n):=\left(\operatorname {Spin} (n)\times \operatorname {U} (1)\right)/\mathbb {Z} _{2}}

with ( x , y ) ( x , y ) {\displaystyle (x,y)\sim (-x,-y)} . It is also denoted Spin C ( n ) {\displaystyle \operatorname {Spin} ^{\mathbb {C} }(n)} . Using the exceptional isomorphism Spin ( 2 ) U ( 1 ) {\displaystyle \operatorname {Spin} (2)\cong \operatorname {U} (1)} , one also has Spin c ( n ) = Spin 2 ( n ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(n)=\operatorname {Spin} ^{2}(n)} with:

Spin k ( n ) := ( Spin ( n ) × Spin ( k ) ) / Z 2 . {\displaystyle \operatorname {Spin} ^{k}(n):=\left(\operatorname {Spin} (n)\times \operatorname {Spin} (k)\right)/\mathbb {Z} _{2}.}

Low-dimensional examples

  • Spin c ( 1 ) U ( 1 ) SO ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(1)\cong \operatorname {U} (1)\cong \operatorname {SO} (2)} , induced by the isomorphism Spin ( 1 ) O ( 1 ) Z 2 {\displaystyle \operatorname {Spin} (1)\cong \operatorname {O} (1)\cong \mathbb {Z} _{2}}
  • Spin c ( 3 ) U ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(3)\cong \operatorname {U} (2)} ,[5] induced by the exceptional isomorphism Spin ( 3 ) Sp ( 1 ) SU ( 2 ) {\displaystyle \operatorname {Spin} (3)\cong \operatorname {Sp} (1)\cong \operatorname {SU} (2)} . Since furthermore Spin ( 2 ) U ( 1 ) SO ( 2 ) {\displaystyle \operatorname {Spin} (2)\cong \operatorname {U} (1)\cong \operatorname {SO} (2)} , one also has Spin c ( 3 ) Spin h ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(3)\cong \operatorname {Spin} ^{\mathrm {h} }(2)} .
  • Spin c ( 4 ) U ( 2 ) × U ( 1 ) U ( 2 ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(4)\cong \operatorname {U} (2)\times _{\operatorname {U} (1)}\operatorname {U} (2)} , induced by the exceptional isomorphism Spin ( 4 ) SU ( 2 ) × SU ( 2 ) {\displaystyle \operatorname {Spin} (4)\cong \operatorname {SU} (2)\times \operatorname {SU} (2)}
  • Spin c ( 6 ) U ( 4 ) {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(6)\rightarrow \operatorname {U} (4)} is a double cover, induced by the exceptional isomorphism Spin ( 6 ) SU ( 4 ) {\displaystyle \operatorname {Spin} (6)\cong \operatorname {SU} (4)}

Properties

For all higher abelian homotopy groups, one has:

π k Spin c ( n ) π k Spin ( n ) × π k U ( 1 ) π k SO ( n ) {\displaystyle \pi _{k}\operatorname {Spin} ^{\mathrm {c} }(n)\cong \pi _{k}\operatorname {Spin} (n)\times \pi _{k}\operatorname {U} (1)\cong \pi _{k}\operatorname {SO} (n)}

for k 2 {\displaystyle k\geq 2} .

See also

Literature

  • Lawson, Herbert Blaine Jr.; Michelsohn, Marie-Louise (1989). Spin Geometry. Princeton Mathematical Series. Vol. 38. Princeton: Princeton University Press. doi:10.1515/9781400883912. ISBN 978-1-4008-8391-2.
  • Christian Bär (1999). "Elliptic symbols". Mathematische Nachrichten. 201 (1).
  • "Stable complex and Spinc-structures" (PDF).
  • Liviu I. Nicolaescu. Notes on Seiberg-Witten Theory (PDF).

References

  1. ^ Lawson & Michelson 1989, Appendix D, Equation (D.1)
  2. ^ Bär 1999, page 14
  3. ^ Stable complex and Spinc-structures, section 2.1
  4. ^ Nicolaescu, page 30
  5. ^ Nicolaescu, Exercise 1.3.9
Retrieved from "https://en.wikipedia.org/w/index.php?title=Spinc_group&oldid=1302390529"